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Figure 1: Mobile ALOHA . We introduce a low-cost mobile manipulation system that is bimanual and supports
whole-body teleoperation. The system costs $32k including onboard power and compute. Left: A user teleoperates to
obtain food from the fridge. Right: Mobile ALOHA can perform complex long-horizon tasks with imitation learning.

Abstract
Imitation learning from human demonstrations has
shown impressive performance in robotics. How-
ever, most results focus on table-top manipulation,
lacking the mobility and dexterity necessary for gen-
erally useful tasks. In this work, we develop a system
for imitating mobile manipulation tasks that are bi-
manual and require whole-body control. We first
present Mobile ALOHA, a low-cost and whole-body
teleoperation system for data collection. It augments
the ALOHA system [104] with a mobile base, and a
whole-body teleoperation interface. Using data col-
lected with Mobile ALOHA, we then perform super-
vised behavior cloning and find that co-training with
existing static ALOHA datasets boosts performance
on mobile manipulation tasks. With 50 demonstra-
tions for each task, co-training can increase success
rates by up to 90%, allowing Mobile ALOHA to au-
tonomously complete complex mobile manipulation
tasks such as sauteing and serving a piece of shrimp,
opening a two-door wall cabinet to store heavy cook-
ing pots, calling and entering an elevator, and lightly
rinsing a used pan using a kitchen faucet.

1. Introduction
Imitation learning from human-provided demonstra-
tions is a promising tool for developing generalist

robots, as it allows people to teach arbitrary skills
to robots. Indeed, direct behavior cloning can en-
able robots to learn a variety of primitive robot skills
ranging from lane-following in mobile robots [67],
to simple pick-and-place manipulation skills [12, 20]
to more delicate manipulation skills like spreading
pizza sauce or slotting in a battery [18, 104]. How-
ever, many tasks in realistic, everyday environments
require whole-body coordination of both mobility
and dexterous manipulation, rather than just individ-
ual mobility or manipulation behaviors. For example,
consider the relatively basic task of putting away a
heavy pot into a cabinet in Figure 1. The robot needs
to first navigate to the cabinet, necessitating the mo-
bility of the robot base. To open the cabinet, the robot
needs to back up while simultaneously maintaining
a firm grasp of the two door handles, motivating
whole-body control. Subsequently, both arms need
to grasp the pot handles and together move the pot
into the cabinet, emphasizing the importance of bi-
manual coordination. Along a similar vein, cooking,
cleaning, housekeeping, and even simply navigating
an office using an elevator all require mobile manip-
ulation and are often made easier with the added
flexibility of two arms. In this paper, we study the
feasibility of extending imitation learning to tasks
that require whole-body control of bimanual mobile
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robots.
Two main factors hinder the wide adoption of

imitation learning for bimanual mobile manipula-
tion. (1) We lack accessible, plug-and-play hardware
for whole-body teleoperation. Bimanual mobile ma-
nipulators can be costly if purchased off-the-shelf.
Robots like the PR2 and the TIAGo can cost more
than $200k USD, making them unaffordable for typi-
cal research labs. Additional hardware and calibra-
tion are also necessary to enable teleoperation on
these platforms. For example, the PR1 uses two hap-
tic devices for bimanual teleoperation and foot ped-
als to control the base [93]. Prior work [5] uses a
motion capture system to retarget human motion to
a TIAGo robot, which only controls a single arm and
needs careful calibration. Gaming controllers and
keyboards are also used for teleoperating the Hello
Robot Stretch [2] and the Fetch robot [1], but do not
support bimanual or whole-body teleoperation. (2)
Prior robot learning works have not demonstrated
high-performance bimanual mobile manipulation
for complex tasks. While many recent works demon-
strate that highly expressive policy classes such as
diffusion models and transformers can perform well
on fine-grained, multi-modal manipulation tasks, it
is largely unclear whether the same recipe will hold
for mobile manipulation: with additional degrees of
freedom added, the interaction between the arms
and base actions can be complex, and a small devia-
tion in base pose can lead to large drifts in the arm’s
end-effector pose. Overall, prior works have not
delivered a practical and convincing solution for bi-
manual mobile manipulation, both from a hardware
and a learning standpoint.
We seek to tackle the challenges of applying imi-

tation learning to bimanual mobile manipulation in
this paper. On the hardware front, we presentMobile
ALOHA, a low-cost and whole-body teleoperation
system for collecting bimanual mobile manipulation
data. Mobile ALOHA extends the capabilities of the
original ALOHA , the low-cost and dexterous biman-
ual puppeteering setup [104], by mounting it on a
wheeled base. The user is then physically tethered to
the system and backdrives the wheels to enable base
movement. This allows for independent movement
of the base while the user has both hands controlling
ALOHA . We record the base velocity data and the
arm puppeteering data at the same time, forming a
whole-body teleoperation system.
On the imitation learning front, we observe that

simply concatenating the base and arm actions then
training via direct imitation learning can yield strong
performance. Specifically, we concatenate the 14-

DoF joint positions of ALOHA with the linear and
angular velocity of the mobile base, forming a 16-
dimensional action vector. This formulation allows
Mobile ALOHA to benefit directly from previous deep
imitation learning algorithms, requiring almost no
change in implementation. To further improve the
imitation learning performance, we are inspired by
the recent success of pre-training and co-training on
diverse robot datasets, while noticing that there are
few to none accessible bimanual mobile manipula-
tion datasets. We thus turn to leveraging data from
static bimanual datasets, which are more abundant
and easier to collect, specifically the static ALOHA
datasets from [81, 104] through the RT-X release
[20]. It contains 825 episodes with tasks disjoint
from the Mobile ALOHA tasks, and has different
mounting positions of the two arms. Despite the
differences in tasks and morphology, we observe
positive transfer in nearly all mobile manipulation
tasks, attaining equivalent or better performance
and data efficiency than policies trained using only
Mobile ALOHA data. This observation is also con-
sistent across different class of state-of-the-art imi-
tation learning methods, including ACT [104] and
Diffusion Policy [18].
The main contribution of this paper is a system

for learning complex mobile bimanual manipulation
tasks. Core to this system is both (1) Mobile ALOHA,
a low-cost whole-body teleoperation system, and (2)
the finding that a simple co-training recipe enables
data-efficient learning of complex mobile manipu-
lation tasks. Our teleoperation system is capable of
multiple hours of consecutive usage, such as cook-
ing a 3-course meal, cleaning a public bathroom, and
doing laundry. Our imitation learning result also
holds across a wide range of complex tasks such
as opening a two-door wall cabinet to store heavy
cooking pots, calling an elevator, pushing in chairs,
and cleaning up spilled wine. With co-training, we
are able to achieve over 80% success on these tasks
with only 50 human demonstrations per task, with
an average of 34% absolute improvement compared
to no co-training.

2. Related Work
Mobile Manipulation.Many current mobile ma-
nipulation systems utilize model-based control,
which involves integrating human expertise and
insights into the system’s design and architec-
ture [9, 17, 33, 52, 93]. A notable example of model-
based control in mobile manipulation is the DARPA
Robotics Challenge [56]. Nonetheless, these systems
can be challenging to develop and maintain, often
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Figure 2: Hardware Details. Left: Mobile ALOHA has two wrist cameras and one top camera, with onboard power and
compute. Middle: The teleoperation setup can be removed and only two ViperX 300 [3] are used during autonomous
execution. Both arms can reach a min/max height of 65cm/200cm, and extends 100cm from the base. Right: Technical
specifications of Mobile ALOHA .

requiring substantial team efforts, and even minor
errors in perception modeling can result in signifi-
cant control failures [6, 51]. Recently, learning-based
approaches have been applied to mobile manipu-
lation, alleviating much of the heavy engineering.
In order to tackle the exploration problem in high-
dimensional state and action spaces of mobile ma-
nipulation tasks, prior works use predefined skill
primitives [86, 91, 92], reinforcement learning with
decomposed action spaces [38, 48, 58, 94, 101], or
whole-body control objectives [36, 42, 99]. Unlike
these prior works that use action primitives, state
estimators, depth images or object bounding boxes,
imitation learning allows mobile manipulators to
learn end-to-end by directly mapping raw RGB ob-
servations to whole-body actions, showing promis-
ing results through large-scale training using real-
world data [4, 12, 78] in indoor environments [39, 78].
Prior works use expert demonstrations collected by
using a VR interface [76], kinesthetic teaching [100],
trained RL policies [43], a smartphone interface [90],
motion capture systems [5], or from humans [8].
Prior works also develop humanoid teleoperation by
using human motion capture suits [19, 22, 23, 26],
exoskeleton [32, 45, 72, 75], VR headsets for visual
feedbacks [15, 53, 65, 87], and haptic feedback de-
vices [14, 66]. Purushottam et al. develop an ex-
oskeleton suit attached to a force plate for whole-
body teleoperation of awheeled humanoid, However,
there is no low-cost solution to collecting whole-
body expert demonstrations for bimanual mobile
manipulation. We present Mobile ALOHA for this
problem. It is suitable for hour-long teleoperation,
and does not require a FPV goggle for streaming
back videos from the robot’s egocentric camera or
haptic devices.

Imitation Learning for Robotics. Imitation learn-
ing enables robots to learn from expert demon-
strations [67]. Behavioral cloning (BC) is a sim-
ple version, mapping observations to actions. En-
hancements to BC include incorporating history
with various architectures [12, 47, 59, 77], new
training objectives [10, 18, 35, 63, 104], regulariza-
tion [71], motor primitives [7, 44, 55, 62, 64, 97],
and data preprocessing [81]. Prior works also fo-
cus on multi-task or few-shot imitation learning,
[25, 27, 30, 34, 46, 50, 88, 102], language-conditioned
imitation learning [12, 47, 82, 83], imitation from
play data [21, 57, 74, 89], using human videos [16,
24, 29, 60, 69, 80, 84, 96], and using task-specific
structures [49, 83, 103]. Scaling up these algorithms
has led to systems adept at generalizing to new ob-
jects, instructions, or scenes [12, 13, 28, 47, 54]. Re-
cently, co-training on diverse real-world datasets
collected from different but similar types of robots
have shown promising results on single-arm manip-
ulation [11, 20, 31, 61, 98], and on navigation [79].
In this work, we use a co-training pipeline for bi-
manual mobile manipulation by leveraging the ex-
isting static bimanual manipulation datasets, and
show that our co-training pipeline improves the per-
formance and data efficiency of mobile manipula-
tion policies across all tasks and several imitation
learning methods. To our knowledge, we are the
first to find that co-training with static manipula-
tion datasets improves the performance and data
efficiency of mobile manipulation policies.

3. Mobile ALOHA Hardware
We developMobile ALOHA, a low-cost mobile manip-
ulator that can perform a broad range of household
tasks. Mobile ALOHA inherits the benefits of the
original ALOHA system [104], i.e. the low-cost, dex-
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terous, and repairable bimanual teleoperation setup,
while extending its capabilities beyond table-top ma-
nipulation. Specifically, we incorporate four key
design considerations:
1. Mobile: The system can move at a speed com-

parable to human walking, around 1.42m/s.
2. Stable: It is stable when manipulating heavy

household objects, such as pots and cabinets.
3. Whole-body teleoperation: All degrees of

freedom can be teleoperated simultaneously,
including both arms and the mobile base.

4. Untethered: Onboard power and compute.
We choose AgileX Tracer AGV ("Tracer") as the

mobile base following considerations 1 and 2. Tracer
is a low-profile, differential drive mobile base de-
signed for warehouse logistics. It can move up to
1.6m/s similar to average human walking speed.
With a maximum payload of 100kg and 17mm height,
we can add a balancing weight low to the ground
to achieve the desired tip-over stability. We found
Tracer to possess sufficient traversability in acces-
sible buildings: it can traverse obstacles as tall as
10mm and slopes as steep as 8 degrees with load,
with a minimum ground clearance of 30mm. In prac-
tice, we found it capable of more challenging ter-
rains such as traversing the gap between the floor
and the elevator. Tracer costs $7,000 in the United
States, more than 5x cheaper than AGVs from e.g.
Clearpath with similar speed and payload.
We then seek to design a whole-body teleopera-

tion system on top of the Tracer mobile base and
ALOHA arms, i.e. a teleoperation system that allows
simultaneous control of both the base and the two
arms (consideration 3). This design choice is particu-
larly important in household settings as it expands
the available workspace of the robot. Consider the
task of opening a two-door cabinet. Even for humans,
we naturally step back while opening the doors to
avoid collision and awkward joint configurations.
Our teleoperation system shall not constrain such
coordinated human motion, nor introduce unnec-
essary artifacts in the collected dataset. However,
designing a whole-body teleoperation system can
be challenging, as both hands are already occupied
by the ALOHA leader arms. We found the design of
tethering the operator’s waist to the mobile base to
be the most simple and direct solution, as shown in
Figure 2 (left). The human can backdrive the wheels
which have very low friction when torqued off. We
measure the rolling resistance to be around 13N on
vinyl floor, acceptable to most humans. Connecting
the operator to the mobile manipulator directly also
enables coarse haptic feedback when the robot col-

lides with objects. To improve the ergonomics, the
height of the tethering point and the positions of
the leader arms can all be independently adjusted
up to 30cm. During autonomous execution, the teth-
ering structure can also be detached by loosening 4
screws, together with the two leader arms. This re-
duces the footprint and weight of the mobile manip-
ulator as shown in Figure 2 (middle). To improve the
ergonomics and expand workspace, we also mount
the four ALOHA arms all facing forward, different
from the original ALOHA which has arms facing
inward.
To make our mobile manipulator untethered (con-

sideration 4), we place a 1.26kWh battery that
weights 14kg at the base. It also serves as a bal-
ancing weight to avoid tipping over. All compute
during data collection and inference is conducted
on a consumer-grade laptop with Nvidia 3070 Ti
GPU (8GB VRAM) and Intel i7-12800H. It accepts
streaming from three Logitech C922x RGB webcams,
at 480x640 resolution and 50Hz. Two cameras are
mounted to the wrist of the follower robots, and
the third facing forward. The laptop also accepts
proprioception streaming from all 4 arms through
USB serial ports, and from the Tracer mobile base
through CAN bus. We record the linear and angular
velocities of the mobile base to be used as actions of
the learned policy. We also record the joint positions
of all 4 robot arms to be used as policy observations
and actions. We refer readers to the original ALOHA
paper [104] for more details about the arms.
With design considerations above, we build Mo-

bile ALOHA with a $32k budget, comparable to a
single industrial cobot such as the Franka Emika
Panda. As illustrated in Figure 2 (middle), the mo-
bile manipulator can reach between 65cm and 200cm
vertically relative to the ground, can extend 100cm
beyond its base, can lift objects that weight 1.5kg,
and can exert pulling force of 100N at a height of
1.5m. Some example tasks that Mobile ALOHA is
capable of includes:
• Housekeeping: Water plants, use a vacuum, load
and unload a dishwasher, obtain drinks from the
fridge, open doors, use washing machine, fling and
spread a quilt, stuff a pillow, zip and hang a jacket,
fold trousers, turn on/off a lamp, and self-charge.

• Cooking: Crack eggs, mince garlic, unpackage
vegetables, pour liquid, sear and flip chicken thigh,
blanch vegetables, stir fry, and serve food in a dish.

• Human-robot interactions: Greet and shake
“hands” with a human, open and hand a beer to
human, help human shave and make bed.
We include more technical specifications of Mo-
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bile ALOHA in Figure 2 (right). Beyond the off-the-
shelf robots, we open-source all of the software and
hardware parts with a detailed tutorial covering 3D
printing, assembly, and software installation. The
tutorial is on the project website.

4. Co-training with
Static ALOHA Data

The typical approach for using imitation learning to
solve real-world robotics tasks relies on using the
datasets that are collected on a specific robot hard-
ware platform for a targeted task. This straightfor-
ward approach, however, suffers from lengthy data
collection processes where human operators collect
demonstration data from scratch for every task on
the a specific robot hardware platform. The policies
trained on these specialized datasets are often not ro-
bust to the perceptual perturbations (e.g. distractors
and lighting changes) due to the limited visual diver-
sity in these datasets [95]. Recently, co-training on
diverse real-world datasets collected from different
but similar types of robots have shown promising
results on single-arm manipulation [11, 20, 31, 61],
and on navigation [79].
In this work, we use a co-training pipeline that

leverages the existing static ALOHA datasets to im-
prove the performance of imitation learning for mo-
bile manipulation, specifically for the bimanual arm
actions. The static ALOHA datasets [81, 104] have
825 demonstrations in total for tasks including Ziploc
sealing, picking up a fork, candy wrapping, tearing a
paper towel, opening a plastic portion cup with a lid,
playing with a ping pong, tape dispensing, using a
coffee machine, pencil hand-overs, fastening a velcro
cable, slotting a battery, and handling over a screw
driver. Notice that the static ALOHA data is all col-
lected on a black table-top with the two arms fixed
to face towards each other. This setup is different
from Mobile ALOHA where the background changes
with the moving base and the two arms are placed in
parallel facing the front. We do not use any special
data processing techniques on either the RGB obser-
vations or the bimanual actions of the static ALOHA
data for our co-training.
Denote the aggregated static ALOHA data as as

Dstatic, and theMobile ALOHA dataset for a taskm as
Dm

mobile. The bimanual actions are formulated as tar-
get joint positions aarms ∈ R14 which includes two
continuous gripper actions, and the base actions are
formulated as target base linear and angular veloci-
ties abase ∈ R2. The training objective for a mobile

manipulation policy πm for a taskm is

E(oi,aiarms,a
i
base)∼Dm

mobile

[
L(aiarms, a

i
base, π

m(oi))
]
+

E(oi,aiarms)∼Dstatic

[
L(aiarms, [0, 0], π

m(oi))
]
,

where oi is the observation consisting of two wrist
camera RGB observations, one egocentric top cam-
era RGB observation mounted between the arms,
and joint positions of the arms, and L is the imi-
tation loss function. We sample with equal prob-
ability from the static ALOHA data Dstatic and the
Mobile ALOHA data Dm

mobile. We set the batch size
to be 16. Since static ALOHA datapoints have no
mobile base actions, we zero-pad the action labels
so actions from both datasets have the same dimen-
sion. We also ignore the front camera in the static
ALOHA data so that both datasets have 3 cameras.
We normalize every action based on the statistics
of the Mobile ALOHA dataset Dm

mobile alone. In our
experiments, we combine this co-training recipe
with multiple base imitation learning approaches,
including ACT [104], Diffusion Policy [18], and
VINN [63].

5. Tasks
We select 7 tasks that cover a wide range of capa-
bilities, objects, and interactions that may appear in
realistic applications. We illustrate them in Figure 3.
For Wipe Wine, the robot needs to clean up spilled
wine on the table. This task requires both mobil-
ity and bimanual dexterity. Specifically, the robot
needs to first navigate to the faucet and pick up the
towel, then navigate back to the table. With one arm
lifting the wine glass, the other arm needs to wipe
the table as well as the bottom of the glass with the
towel. This task is not possible with static ALOHA,
and would take more time for a single-armed mobile
robot to accomplish.
For Cook Shrimp, the robot sautes one piece of raw
shrimp on both sides before serving it in a bowl. Mo-
bility and bimanual dexterity are also necessary for
this task: the robot needs to move from the stove to
the kitchen island as well as flipping the shrimp with
spatula while the other arm tilting the pan. This task
requires more precision than wiping wine due to the
complex dynamics of flipping a half-cooked shrimp.
Since the shrimp may slightly stick to the pan, it is
difficult for the robot to reach under the shrimp with
the spatula and precisely flip it over.
For Rinse Pan, the robot picks up a dirty pan and
rinse it under the faucet before placing it on the
drying rack. In addition to the challenges in the pre-
vious two tasks, turning on the faucet poses a hard
perception challenge. The knob is made from shiny
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Wipe Wine: The robot base is initialized within a square of 1.5m x 1.5m with yaw up to 30°. It first navigates to the sink and picks up the towel 
hanging on the faucet (#1). It then turns around and approaches the kitchen island, picks up the wine glass (randomized in 30cm x 30cm), wipes 
the spilled wine (#2), and puts down the wine glass on the table (#3). Each demo has 1300 steps or 26 seconds.

Cook Shrimp: The robot is randomized up to 5cm and all objects up to 2cm. The right gripper first pours oil into the hot pan (#1) followed by 
raw shrimp (#2). With left gripper lifting the pan at an angle, the right gripper grasps the spatula and flips the shrimp (#3). The robot then turns 
around and pours the shrimp into an empty bowl (#4) before placing the pan on the table. Each demo has 3750 steps or 75 seconds.

Wash Pan: The pan randomized up to 10cm with yaw up to 45°. The left gripper grasps the pan (#1) before turning around to the faucet. The 
right gripper opens then closes the faucet with left gripper holding the pan to receive the water (#2). The left gripper then swirls the water inside 
the pan, pours it out, before placing the pan on the rack (#3). Each demo has 1100 steps or 22 seconds.

Use Cabinet: The robot is randomized up to 10cm and pots up to 5cm. A total of 3 pots are used. The robot first approaches the cabinet and 
grasp both handles, then backs up pulling both doors open (#1). Next, both arms grasp the handles of the pot, move forward, and place it inside 
the cabinet (#2). The robot then backs up and closes both cabinet doors (#4). Each demo has 1500 steps or 30 seconds.

Take Elevator: The robot starts 15m from the elevator and is randomized across the 10m wide lobby. The robot goes around a column to reach 
the elevator button (#1). The right gripper presses the button (#2) and the robot enters the elevator (#3). Each demo has 2250 steps or 45 seconds.

#1 #2 #3init.

Push Chairs: The robot’s initial position is randomized up to 10cm. Demonstration dataset contains pushing in the first 3 chairs, and the robot is 
tested with all 5 chairs. Each demo has 2000 steps or 40 seconds.

#1 #2 #3 #4init.

#1 #2 #3init.

#1 #2 #3 #4init.

#1 #2 #3init.

#1 #2 #3init.

Figure 3: Task Definitions. We illustrate 6 real-world tasks that Mobile ALOHA can perform autonomously. The 7th
task High Five is illustrated in the Appendix A.1 due to space constraint. For each task, we describe randomization
and sub-task definitions. We also include an illustration of the base movement for each task (not drawn to scale).
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Wipe Wine (50 demos) Cook Shrimp (20 demos)

Grasp
Towel

Lift Glass
and Wipe

Place
Glass

Whole
Task

Add
Oil

Add
Shrimp

Flip
Shrimp

Plate
Shrimp

Whole
Task

Co-train 100 95 100 95 100 100 60 67 40
No Co-train 95 58 90 50 100 100 40 50 20

Rinse Pan (50 demos) Use Cabinet (50 demos)

Grasp
Pan

Turn On
Faucet

Place
Pan

Whole
Task

Open
Cabinets

Grasp
Pot

Place
Pot

Close
Cabinet

Whole
Task

Co-train 100 80 100 80 95 100 95 95 85
No Co-train 100 0 100 0 95 95 100 95 85

Call Elevator (50 demos) Push Chairs (50 demos) High Five (20 demos)

Navi. Press
Button

Enter
Elevator

Whole
Task

1-3rd
Chair

4th
(OOD)

5th
(OOD)

Whole
Task

Unseen
Attire

Unseen
Human Navi. Whole

Task

Co-train 100 100 95 95 100 85 89 80 90 80 100 85
No Co-train 100 5 0 0 100 70 0 0 90 80 100 85

Table 1: Co-training improves ACT performance. Across 7 challenging mobile manipulation tasks, co-training
with static ALOHA dataset consistently improve the success rate (%) of ACT. It is particularly important for sub-tasks
like Press Button in Call Elevator and Turn on Faucet in Rinse Pan, where precise manipulation is the bottleneck.

stainless steel and is small in size: roughly 4cm in
length and 0.7cm in diameter. Due to the stochas-
ticity introduced by the base motion, the arm needs
to actively compensate for the errors by “visually-
servoing” to the shiny knob. A centimeter-level error
could result in task failure.
For Use Cabinet, the robot picks up a heavy pot and
places it inside a two-door cabinet. While seemingly
a task that require no base movement, the robot
actually needs to move back and forth four times
to accomplish this task. For example when open-
ing the cabinet door, both arms need to grasp the
handle while the base is moving backward. This
is necessary to avoid collision with the door and
have both arms within their workspace. Maneuvers
like this also stress the importance of whole-body
teleoperation and control: if the arms and base con-
trol are separate, the robot will not be able to open
both doors quickly and fluidly. Notably, the heaviest
pot in our experiments weighs 1.4kg, exceeding the
single arm’s payload limit of 750g while within the
combined payload of two arms.
For Call Elevator , the robot needs to enter the el-
evator by pressing the button. We emphasize long
navigation, large randomization, and precise whole-
body control in this task. The robot starts around
15m from the elevator and is randomized across the
10m wide lobby. To press the elevator button, the
robot needs to go around a column and stop precisely
next to the button. Pressing the button, measured
2cm×2cm in size, requires precision as pressing the

peripheral or pressing too lightly will not activate
the elevator. The robot also needs to turn sharply
and precisely to enter the elevator door: there is only
30cm in clearance between the robot’s widest part
and the door.
For Push Chairs, the robot needs to push in 5 chairs
in front of a long desk. This task emphasizes the
strength of the mobile manipulator: it needs to over-
come the friction between the 5kg chair and the
ground with coordinated arms and base movement.
To make this task more challenging, we only collect
data for the first 3 chairs, and stress test the robot to
extrapolate to the 4th and 5th chair.
For High Five, we include illustrations in the Ap-
pendix A.1. The robot needs to go around the kitchen
island, and whenever a human approach it from the
front, stop moving and high five with the human. Af-
ter the high five, the robot should continue moving
only when the human moves out of its path. We col-
lect data wearing different clothes and evaluate the
trained policy on unseen persons and unseen attires.
While this task does not require a lot of precision,
it highlights Mobile ALOHA’s potential for studying
human-robot interactions.
We want to highlight that for all tasks mentioned

above, open-loop replaying a demonstration with ob-
jects restored to the same configurations will achieve
zero whole-task success. Successfully completing
the task requires the learned policy to react close-
loop and correct for those errors. We believe the
source of errors during the open-loop replaying is
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Wipe Wine (50 demos) Push Chairs (50 demos)

Grasp
Towel

Lift Glass
and Wipe

Place
Glass

Whole
Task

1st
Chair

2nd
Chair

3rd
Chair

Whole
Task

VINN + Chunking Co-train 85 18 100 15 100 70 86 60
No Co-train 50 40 100 20 90 72 62 40

Diffusion Policy Co-train 90 72 100 65 100 100 100 100
No Co-train 75 47 100 35 100 80 100 80

ACT Co-train 100 95 100 95 100 100 100 100
No Co-train 95 58 90 50 100 100 100 100

Table 2: Mobile ALOHA is compatible with recent imitation learning methods. VINN with chunking, Diffusion
Policy, and ACT all achieves good performance on Mobile ALOHA, and benefit from co-training with static ALOHA.

the mobile base’s velocity control. As an example,
we observe >10cm error on average when replaying
the base actions for a 180 degree turn with 1m ra-
dius. We include more details about this experiment
in Appendix A.4.

6. Experiments
We aim to answer two central questions in our ex-
periments. (1) Can Mobile ALOHA acquire complex
mobile manipulation skills with co-training and a
small amount of mobile manipulation data? (2) Can
Mobile ALOHA work with different types of imita-
tion learning methods, including ACT [104], Diffu-
sion Policy [18], and retrieval-based VINN [63]? We
conduct extensive experiments in the real-world to
examine these questions.
As a preliminary, all methods we will examine em-

ploy “action chunking” [104], where a policy predicts
a sequence of future actions instead of one action at
each timestep. It is already part of the method for
ACT and Diffusion policy, and simple to be added for
VINN. We found action chunking to be crucial for
manipulation, improving the coherence of generated
trajectory and reducing the latency from per-step
policy inference. Action chunking also provides a
unique advantage for Mobile ALOHA: handling the
delay of different parts of the hardware more flexibly.
We observe a delay between target and actual veloc-
ities of our mobile base, while the delay for position-
controlled arms is much smaller. To account for a
delay of d steps of the mobile base, our robot exe-
cutes the first k − d arm actions and last k − d base
actions of an action chunk of length k.

6.1. Co-training Improves Performance
We start with ACT [104], the method introduced
with ALOHA, and train it on all 7 tasks with and
without co-training. We then evaluate each pol-
icy in the real-world, with randomization of robot

and objects configurations as described in Figure 3.
To calculate the success rate for a sub-task, we di-
vide#Success by#Attempts. For example in the
case of Lift Glass andWipe sub-task, the#Attempts
equals the number of success from the previous sub-
task Grasp Towel, as the robot could fail and stop at
any sub-task. This also means the final success rate
equals the product of all sub-task success rates. We
report all success rates in Table 1. Each success rate
is computed from 20 trials of evaluation, except Cook
Shrimp which has 5.
With the help of co-training, the robot obtains 95%

success forWipe Wine, 95% success for Call Elevator,
85% success for Use Cabinet, 85% success for High
Five, 80% success for Rinse Pan, and 80% success for
Push Chairs. Each of these tasks only requires 50 in-
domain demonstrations, or 20 in the case ofHigh Five.
The only task that falls below 80% success is Cook
Shrimp (40%), which is a 75-second long-horizon task
for which we only collected 20 demonstrations. We
found the policy to struggle with flipping the shrimp
with the spatula and pouring the shrimp inside the
white bowl, which has low contrast with the white
table. We hypothesize that the lower success is likely
due to the limited demonstration data. Co-training
improves the whole-task success rate in 5 out of the
7 tasks, with a boost of 45%, 20%, 80%, 95% and 80%
respectively. For the remaining two tasks, the suc-
cess rate is comparable between co-training and no
co-training. We find co-training to be more helpful
for sub-tasks where precise manipulation is the bot-
tleneck, for example Press Button, Flip Shrimp, and
Turn On Faucet. In all of these cases, compounding
errors appear to be the main source of failure, either
from the stochasticity of robot base velocity control
or from rich contacts such as grasping of the spatula
and making contact with the pan during Flip Shrimp.
We hypothesize that the “motion prior” of grasping
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Figure 4: Data efficiency. Co-training with static
ALOHA data leads to better data efficiency and consistent
improvements over training with Mobile ALOHA data
only. Figure style credits to [70].

and approaching objects in the static ALOHA dataset
still benefits Mobile ALOHA, especially given the in-
variances introduced by the wrist camera [41]. We
also find the co-trained policy to generalize better
in the case of Push Chairs and Wipe Wine. For Push
Chairs, both co-training and no co-training achieve
perfect success for the first 3 chairs, which are seen
in the demonstrations. However, co-training per-
forms much better when extrapolating to the 4th
and 5th chair, by 15% and 89% respectively. ForWipe
Wine, we observe that the co-trained policy performs
better at the boundary of the wine glass randomiza-
tion region. We thus hypothesize that co-training
can also help prevent overfitting, given the low-data
regime of 20-50 demonstrations and the expressive
transformer-based policy used.

6.2. Compatibility with
ACT, Diffusion Policy, and VINN

We train two recent imitation learning methods,
Diffusion Policy [18] and VINN [63], with Mobile
ALOHA in addition to ACT. Diffusion policy trains a
neural network to gradually refine the action predic-
tion. We use the DDIM scheduler [85] to improve in-
ference speed, and apply data augmentation to image
observations to prevent overfitting. The co-training
data pipeline is the same as ACT, and we include
more training details in the Appendix A.3. VINN
trains a visual representation model, BYOL [37] and
uses it to retrieve actions from the demonstration
dataset with nearest neighbors. We augment VINN
retrieval with proprioception features and tune the
relative weight to balance visual and proprioception
feature importance. We also retrieve an action chunk
instead of a single action and find significant per-
formance improvement similar to Zhao et al.. For

Static ALOHA proportion (%) 30 50 70
(default)

Success (%) 95 95 90

Table 3: Co-training is robust to different data mix-
tures. Result uses ACT training on theWipe Wine task.

Co-train Pre-train No Co-train
No Pre-train

Success (%) 95 40 50

Table 4: Co-train vs. Pre-train. Co-train outperforms
pre-train on the Wipe Wine task. For pre-train, we first
train ACT on the static ALOHA data and then fine-tune it
with the Mobile ALOHA data.

co-training, we simply co-train the BYOL encoder
with the combined mobile and static data.
In Table 2, we report co-training and no cotraining

success rates on 2 real-world tasks: Wipe Wine and
Push Chairs. Overall, Diffusion Policy performs sim-
ilarly to ACT on Push Chairs, both obtaining 100%
with co-training. For Wipe Wine, we observe worse
performance with diffusion at 65% success. The Dif-
fusion Policy is less precise when approaching the
kitchen island and grasping the wine glass. We hy-
pothesize that 50 demonstrations is not enough for
diffusion given it’s expressiveness: previous works
that utilize Diffusion Policy tend to train on upwards
of 250 demonstrations. For VINN + Chunking, the
policy performs worse than ACT or Diffusion across
the board, while still reaching reasonable success
rates with 60% on Push Chairs and 15% onWipeWine.
The main failure modes are imprecise grasping on
Lift Glass and Wipe as well as jerky motion when
switching between chunks. We find that increasing
the weight on proprioception when retrieving can
improve the smoothness while at a cost of paying
less attention to visual inputs. We find co-training
to improve Diffusion Policy’s performance, by 30%
and 20% for onWipe Wine and Push Chairs respec-
tively. This is expected as co-training helps address
overfitting. Unlike ACT and Diffusion Policy, we
observe mixed results for VINN, where co-training
hurts Wipe Wine by 5% while improves Push Chairs
by 20%. Only the representations of VINN are co-
trained, while the action prediction mechanism of
VINN does not have a way to leverage the out-of-
domain static ALOHA data, perhaps explaining these
mixed results.
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Figure 5: Teleoperator learning curves. New users
can quickly approach expert speed on an unseen tasks
teleoperating Mobile ALOHA .

7. Ablation Studies
Data Efficiency. In Figure 4, we ablate the num-
ber of mobile manipulation demonstrations for both
co-training and no co-training, using ACT on the
Wipe Wine task. We consider 25, 35, and 50 Mobile
ALOHA demonstrations and evaluate for 20 trials
each. We observe that co-training leads to better data
efficiency and consistent improvements over train-
ing using onlyMobile ALOHA data. With co-training,
the policy trained with 35 in-domain demonstrations
can outperform the no co-training policy trained
with 50 in-domain demonstrations, by 20% (70% vs.
50%).
Co-training Is Robust To Different Data Mix-
tures. We sample with equal probability from the
static ALOHA datasets and the Mobile ALOHA task
dataset to form a training mini-batch in our co-
training experiments so far, giving a co-training data
sampling rate of roughly 50%. In Table 3, we study
how different sampling strategies affect performance
on the Wipe Wine task. We train ACT with 30% and
70% co-training data sampling rates in addition to
50%, then evaluate 20 trials each. We see similar
performance across the board, with 95%, 95% and
90% success respectively. This experiment suggests
that co-training performance is not sensitive to dif-
ferent data mixtures, reducing the manual tuning
necessary when incorporating co-training on a new
task.
Co-training Outperforms Pre-training. In Ta-
ble 4, we compare co-training and pre-training on
the static ALOHA data. For pre-training, we first
train ACT on the static ALOHA data for 10K steps
and then continue training with in-domain task data.
We experiment with theWipe Wine task and observe

that pre-training provides no improvements over
training solely on Wipe Wine data. We hypothesize
that the network forgets its experience on the static
ALOHA data during the fine-tuning phase.

8. User Studies
We conduct a user study to evaluate the effective-
ness of Mobile ALOHA teleoperation. Specifically,
we measure how fast participants are able to learn to
teleoperate an unseen task. We recruit 8 participants
among computer science graduate students, with 5
females and 3 males aged 21-26. Four participants
has no prior teleoperation experience, and the re-
maining 4 have varying levels of expertise. None
of the them have used Mobile ALOHA before. We
start by allowing each participant to freely interact
with objects in the scene for 3 minutes. We held
out all objects that will be used for the unseen tasks
during this process. Next, we give each participants
two tasks: Wipe Wine and Use Cabinet. An expert
operator will first demonstrate the task, followed
by 5 consecutive trials from the participants. We
record the completion time for each trial, and plot
them in Figure 5. We notice a steep decline in com-
pletion time: on average, the time it took to perform
the task went from 46s to 28s for Wipe Wine (down
39%), and from 75s to 36s for Use Cabinet (down 52%).
The average participant can also to approach speed
of expert demonstrations after 5 trials, demonstrat-
ing the ease of use and learning of Mobile ALOHA
teleoperation.

9. Conclusion, Limitations and
Future Directions

In summary, our paper tackles both the hardware
and the software aspects of bimanual mobile ma-
nipulation. Augmenting the ALOHA system with a
mobile base and whole-body teleoperation allows us
to collect high-quality demonstrations on complex
mobile manipulation tasks. Then through imitation
learning co-trained with static ALOHA data, Mobile
ALOHA can learn to perform these tasks with only
20 to 50 demonstrations. We are also able to keep the
system accessible, with under $32k budget including
onboard power and compute, and open-sourcing on
both software and hardware.
Despite Mobile ALOHA’s simplicity and perfor-

mance, there are still limitations that we hope to ad-
dress in future works. On the hardware front, wewill
seek to reduce the occupied area of Mobile ALOHA.
The current footprint of 90cm x 135cm could be too
narrow for certain paths. In addition, the fixed height
of the two follower armsmakes lower cabinets, ovens
and dish washers challenging to reach. We are plan-
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ning to add more degrees of freedom to the arms’
elevation to address this issue. On the software front,
we limit our policy learning results to single task im-
itation learning. The robot can not yet improve itself
autonomously or explore to acquire new knowledge.
In addition, the Mobile ALOHA demonstrations are
collected by two expert operators. We leave it to fu-
ture work for tackling imitation learning from highly
suboptimal, heterogeneous datasets.

Acknowledgments
We thank the Stanford Robotics Center and Steve
Cousins for providing facility support for our experi-
ments. We also thank members of Stanford IRIS Lab:
Lucy X. Shi and Tian Gao, and members of Stan-
ford REAL Lab: Cheng Chi, Zhenjia Xu, Yihuai Gao,
Huy Ha, Zeyi Liu, Xiaomeng Xu, Chuer Pan and
Shuran Song, for providing extensive helps for our
experiments. We appreciate much photographing
by Qingqing Zhao, and feedbacks from and helpful
discussions with Karl Pertsch, Boyuan Chen, Ziwen
Zhuang, Quan Vuong and Fei Xia. This project is sup-
ported by the Boston Dynamics AI Institute and ONR
grant N00014-21-1-2685. Zipeng Fu is supported by
Stanford Graduate Fellowship.

References
[1] Fetch robot. https://docs.fetchrobotics.com/

teleop.html. 2
[2] Hello robot stretch. https://github.com/

hello-robot/stretch_fisheye_web_interface. 2
[3] Viperx 300 6dof. https://www.trossenrobotics.

com/viperx-300-robot-arm.aspx. 3
[4] Michael Ahn, Anthony Brohan, Noah Brown,

Yevgen Chebotar, Omar Cortes, Byron
David, Chelsea Finn, Chuyuan Fu, Keerthana
Gopalakrishnan, Karol Hausman, Alex Her-
zog, Daniel Ho, Jasmine Hsu, Julian Ibarz,
Brian Ichter, Alex Irpan, Eric Jang, Rosario Jau-
regui Ruano, Kyle Jeffrey, Sally Jesmonth,
Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Kuang-Huei Lee, Sergey
Levine, Yao Lu, Linda Luu, Carolina Parada,
Peter Pastor, Jornell Quiambao, Kanishka Rao,
Jarek Rettinghouse, Diego Reyes, Pierre Ser-
manet, Nicolas Sievers, Clayton Tan, Alexan-
der Toshev, Vincent Vanhoucke, Fei Xia, Ted
Xiao, Peng Xu, Sichun Xu, Mengyuan Yan,
and Andy Zeng. Do as i can and not as i say:
Grounding language in robotic affordances. In
arXiv preprint arXiv:2204.01691, 2022. 3

[5] Miguel Arduengo, Ana Arduengo, Adrià
Colomé, Joan Lobo-Prat, and Carme Torras.
Human to robot whole-body motion transfer.

In 2020 IEEE-RAS 20th International Conference
on Humanoid Robots (Humanoids), 2021. 2, 3

[6] Christopher G Atkeson, PW Babu Ben-
zun, Nandan Banerjee, Dmitry Berenson,
Christoper P Bove, Xiongyi Cui, Mathew De-
Donato, Ruixiang Du, Siyuan Feng, Perry
Franklin, et al. What happened at the darpa
robotics challenge finals. The DARPA robotics
challenge finals: Humanoid robots to the rescue.
3

[7] Shikhar Bahl, Abhinav Gupta, and Deepak
Pathak. Hierarchical neural dynamic policies.
RSS, 2021. 3

[8] Shikhar Bahl, Abhinav Gupta, and Deepak
Pathak. Human-to-robot imitation in the wild.
arXiv preprint arXiv:2207.09450, 2022. 3

[9] Max Bajracharya, James Borders, Dan
Helmick, Thomas Kollar, Michael Laskey,
John Leichty, Jeremy Ma, Umashankar
Nagarajan, Akiyoshi Ochiai, Josh Petersen,
et al. A mobile manipulation system for
one-shot teaching of complex tasks in homes.
In 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020. 2

[10] H Bharadhwaj, J Vakil, M Sharma, A Gupta,
S Tulsiani, and V Kumar. Roboagent: Towards
sample efficient robot manipulation with se-
mantic augmentations and action chunking,
2023. 3

[11] Konstantinos Bousmalis, Giulia Vezzani,
Dushyant Rao, Coline Devin, Alex X. Lee,
Maria Bauza, Todor Davchev, Yuxiang Zhou,
Agrim Gupta, Akhil Raju, Antoine Lau-
rens, Claudio Fantacci, Valentin Dalibard,
Martina Zambelli, Murilo Martins, Rugile
Pevceviciute, Michiel Blokzijl, Misha Denil,
Nathan Batchelor, Thomas Lampe, Emilio
Parisotto, Konrad Żołna, Scott Reed, Ser-
gio Gómez Colmenarejo, Jon Scholz, Ab-
bas Abdolmaleki, Oliver Groth, Jean-Baptiste
Regli, Oleg Sushkov, Tom Rothörl, José En-
rique Chen, Yusuf Aytar, Dave Barker, Joy Or-
tiz, Martin Riedmiller, Jost Tobias Springen-
berg, Raia Hadsell, Francesco Nori, and Nico-
las Heess. Robocat: A self-improving foun-
dation agent for robotic manipulation. arXiv
preprint arXiv:2306.11706, 2023. 3, 5

[12] Anthony Brohan, Noah Brown, Justice Carba-
jal, Yevgen Chebotar, Joseph Dabis, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Haus-
man, Alex Herzog, Jasmine Hsu, Julian Ibarz,
Brian Ichter, Alex Irpan, Tomas Jackson, Sally
Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry
Kalashnikov, Yuheng Kuang, Isabel Leal,

11

https://mobile-aloha.github.io
https://docs.fetchrobotics.com/teleop.html
https://docs.fetchrobotics.com/teleop.html
https://github.com/hello-robot/stretch_fisheye_web_interface
https://github.com/hello-robot/stretch_fisheye_web_interface
https://www.trossenrobotics.com/viperx-300-robot-arm.aspx
https://www.trossenrobotics.com/viperx-300-robot-arm.aspx


Mobile ALOHA: https://mobile-aloha.github.io

Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav
Malla, Deeksha Manjunath, Igor Mordatch,
Ofir Nachum, Carolina Parada, Jodilyn Peralta,
Emily Perez, Karl Pertsch, Jornell Quiambao,
Kanishka Rao, Michael Ryoo, Grecia Salazar,
Pannag Sanketi, Kevin Sayed, Jaspiar Singh,
Sumedh Sontakke, Austin Stone, Clayton Tan,
Huong Tran, Vincent Vanhoucke, Steve Vega,
Quan Vuong, Fei Xia, Ted Xiao, Peng Xu,
Sichun Xu, Tianhe Yu, and Brianna Zitkovich.
Rt-1: Robotics transformer for real-world con-
trol at scale. In arXiv preprint arXiv:2212.06817,
2022. 1, 3

[13] Anthony Brohan, Noah Brown, Justice Car-
bajal, Yevgen Chebotar, Xi Chen, Krzysztof
Choromanski, Tianli Ding, Danny Driess,
Avinava Dubey, Chelsea Finn, Pete Flo-
rence, Chuyuan Fu, Montse Gonzalez Are-
nas, Keerthana Gopalakrishnan, Kehang Han,
Karol Hausman, Alex Herzog, Jasmine Hsu,
Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan
Julian, Dmitry Kalashnikov, Yuheng Kuang,
Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee,
Sergey Levine, Yao Lu, Henryk Michalewski,
Igor Mordatch, Karl Pertsch, Kanishka Rao,
Krista Reymann, Michael Ryoo, Grecia Salazar,
Pannag Sanketi, Pierre Sermanet, Jaspiar
Singh, Anikait Singh, Radu Soricut, Huong
Tran, Vincent Vanhoucke, Quan Vuong,
Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun
Xu, Tianhe Yu, and Brianna Zitkovich. Rt-2:
Vision-language-action models transfer web
knowledge to robotic control. In arXiv pre-
print arXiv:2307.15818, 2023. 3

[14] Anais Brygo, Ioannis Sarakoglou, Nadia
Garcia-Hernandez, and Nikolaos Tsagarakis.
Humanoid robot teleoperation with vibrotac-
tile based balancing feedback. In Haptics: Neu-
roscience, Devices, Modeling, and Applications:
9th International Conference, EuroHaptics 2014,
Versailles, France, June 24-26, 2014, Proceedings,
Part II 9, 2014. 3

[15] Jean Chagas Vaz, Dylan Wallace, and Paul Y
Oh. Humanoid loco-manipulation of pushed
carts utilizing virtual reality teleoperation. In
ASME International Mechanical Engineering
Congress and Exposition, 2021. 3

[16] Annie S Chen, Suraj Nair, and Chelsea Finn.
Learning generalizable robotic reward func-
tions from" in-the-wild" human videos. arXiv
preprint arXiv:2103.16817, 2021. 3

[17] Joel Chestnutt, Manfred Lau, German Cheung,
James Kuffner, Jessica Hodgins, and Takeo

Kanade. Footstep planning for the honda
asimo humanoid. In ICRA, 2005. 2

[18] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia
Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion policy: Visuomotor
policy learning via action diffusion. In Pro-
ceedings of Robotics: Science and Systems (RSS),
2023. 1, 2, 3, 5, 8, 9

[19] R Cisneros, M Benallegue, K Kaneko, H Kam-
inaga, G Caron, A Tanguy, R Singh, L Sun,
A Dallard, C Fournier, et al. Team janus hu-
manoid avatar: A cybernetic avatar to embody
human telepresence. In Toward Robot Avatars:
Perspectives on the ANA Avatar XPRIZE Com-
petition, RSS Workshop, 2022. 3

[20] OpenX-Embodiment Collaboration, Abhishek
Padalkar, Acorn Pooley, Ajinkya Jain, Alex
Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony
Brohan, Antonin Raffin, Ayzaan Wahid, Ben
Burgess-Limerick, Beomjoon Kim, Bernhard
Schölkopf, Brian Ichter, Cewu Lu, Charles
Xu, Chelsea Finn, Chenfeng Xu, Cheng Chi,
Chenguang Huang, Christine Chan, Chuer
Pan, Chuyuan Fu, Coline Devin, DannyDriess,
Deepak Pathak, Dhruv Shah, Dieter Büchler,
Dmitry Kalashnikov, Dorsa Sadigh, Edward
Johns, Federico Ceola, Fei Xia, Freek Stulp,
Gaoyue Zhou, Gaurav S. Sukhatme, Gautam
Salhotra, Ge Yan, Giulio Schiavi, Hao Su,
Hao-Shu Fang, Haochen Shi, Heni Ben Amor,
Henrik I Christensen, Hiroki Furuta, Homer
Walke, Hongjie Fang, Igor Mordatch, Ilija Ra-
dosavovic, Isabel Leal, Jacky Liang, Jaehyung
Kim, Jan Schneider, Jasmine Hsu, Jeannette
Bohg, Jeffrey Bingham, Jiajun Wu, Jialin Wu,
Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon Oh,
Jitendra Malik, Jonathan Tompson, Jonathan
Yang, Joseph J. Lim, João Silvério, Junhyek
Han, Kanishka Rao, Karl Pertsch, Karol Haus-
man, Keegan Go, Keerthana Gopalakrish-
nan, Ken Goldberg, Kendra Byrne, Kenneth
Oslund, Kento Kawaharazuka, Kevin Zhang,
Keyvan Majd, Krishan Rana, Krishnan Srini-
vasan, Lawrence Yunliang Chen, Lerrel Pinto,
Liam Tan, Lionel Ott, Lisa Lee, Masayoshi
Tomizuka, Maximilian Du, Michael Ahn,
Mingtong Zhang, Mingyu Ding, Mohan Ku-
mar Srirama, Mohit Sharma, Moo Jin Kim,
Naoaki Kanazawa, Nicklas Hansen, Nicolas
Heess, Nikhil J Joshi, Niko Suenderhauf, Nor-
man Di Palo, Nur Muhammad Mahi Shafiul-
lah, Oier Mees, Oliver Kroemer, Pannag R

12

https://mobile-aloha.github.io


Mobile ALOHA: https://mobile-aloha.github.io

Sanketi, Paul Wohlhart, Peng Xu, Pierre Ser-
manet, Priya Sundaresan, Quan Vuong, Rafael
Rafailov, Ran Tian, Ria Doshi, Roberto Martín-
Martín, Russell Mendonca, Rutav Shah, Ryan
Hoque, Ryan Julian, Samuel Bustamante,
Sean Kirmani, Sergey Levine, Sherry Moore,
Shikhar Bahl, Shivin Dass, Shuran Song,
Sichun Xu, Siddhant Haldar, Simeon Ade-
bola, Simon Guist, Soroush Nasiriany, Ste-
fan Schaal, Stefan Welker, Stephen Tian,
Sudeep Dasari, Suneel Belkhale, Takayuki Osa,
Tatsuya Harada, Tatsuya Matsushima, Ted
Xiao, Tianhe Yu, Tianli Ding, Todor Davchev,
Tony Z. Zhao, Travis Armstrong, Trevor Dar-
rell, Vidhi Jain, Vincent Vanhoucke, Wei Zhan,
Wenxuan Zhou, Wolfram Burgard, Xi Chen,
XiaolongWang, Xinghao Zhu, Xuanlin Li, Yao
Lu, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu,
Ying Xu, Yixuan Wang, Yonatan Bisk, Yoony-
oung Cho, Youngwoon Lee, Yuchen Cui, Yueh
hua Wu, Yujin Tang, Yuke Zhu, Yunzhu Li,
Yusuke Iwasawa, Yutaka Matsuo, Zhuo Xu,
and Zichen Jeff Cui. Open X-Embodiment:
Robotic learning datasets and RT-X models.
https://arxiv.org/abs/2310.08864, 2023. 1, 2, 3, 5

[21] Zichen Jeff Cui, Yibin Wang, Nur Muham-
mad Mahi Shafiullah, and Lerrel Pinto. From
play to policy: Conditional behavior genera-
tion from uncurated robot data. arXiv preprint
arXiv:2210.10047, 2022. 3

[22] Stefano Dafarra, Kourosh Darvish, Riccardo
Grieco, Gianluca Milani, Ugo Pattacini,
Lorenzo Rapetti, Giulio Romualdi, Mattia
Salvi, Alessandro Scalzo, Ines Sorrentino,
et al. icub3 avatar system. arXiv preprint
arXiv:2203.06972, 2022. 3

[23] Kourosh Darvish, Yeshasvi Tirupachuri,
Giulio Romualdi, Lorenzo Rapetti, Diego
Ferigo, Francisco Javier Andrade Chavez,
and Daniele Pucci. Whole-body geometric
retargeting for humanoid robots. In 2019
IEEE-RAS 19th International Conference on
Humanoid Robots (Humanoids), 2019. 3

[24] Neha Das, Sarah Bechtle, Todor Davchev, Di-
nesh Jayaraman, Akshara Rai, and Franziska
Meier. Model-based inverse reinforcement
learning from visual demonstrations. In Con-
ference on Robot Learning, pages 1930–1942.
PMLR, 2021. 3

[25] Sudeep Dasari and Abhinav Kumar Gupta.
Transformers for one-shot visual imitation.
In Conference on Robot Learning, 2020. 3

[26] Anca D Dragan, Kenton CT Lee, and Sid-
dhartha S Srinivasa. Legibility and predictabil-

ity of robot motion. In 2013 8th ACM/IEEE
International Conference on Human-Robot In-
teraction (HRI), 2013. 3

[27] Yan Duan, Marcin Andrychowicz, Bradly C.
Stadie, Jonathan Ho, Jonas Schneider,
Ilya Sutskever, P. Abbeel, and Wojciech
Zaremba. One-shot imitation learning. ArXiv,
abs/1703.07326, 2017. 3

[28] Frederik Ebert, Yanlai Yang, Karl Schmeck-
peper, Bernadette Bucher, Georgios Georgakis,
Kostas Daniilidis, Chelsea Finn, and Sergey
Levine. Bridge data: Boosting generalization
of robotic skills with cross-domain datasets.
ArXiv, abs/2109.13396, 2021. 3

[29] Ashley D Edwards and Charles L Isbell. Per-
ceptual values from observation. arXiv pre-
print arXiv:1905.07861, 2019. 3

[30] Peter Englert and Marc Toussaint. Learning
manipulation skills from a single demonstra-
tion. The International Journal of Robotics Re-
search, 37(1):137–154, 2018. 3

[31] Hao-Shu Fang, Hongjie Fang, Zhenyu Tang,
Jirong Liu, Chenxi Wang, Junbo Wang, Haoyi
Zhu, and Cewu Lu. Rh20t: A comprehensive
robotic dataset for learning diverse skills in
one-shot. In Towards Generalist Robots: Learn-
ing Paradigms for Scalable Skill Acquisition@
CoRL2023, 2023. 3, 5

[32] Hongjie Fang, Hao-Shu Fang, Yiming Wang,
Jieji Ren, Jingjing Chen, Ruo Zhang, Weiming
Wang, and Cewu Lu. Low-cost exoskeletons
for learning whole-arm manipulation in the
wild. arXiv preprint arXiv:2309.14975, 2023. 3

[33] Siyuan Feng, Eric Whitman, X Xinjilefu, and
Christopher G Atkeson. Optimization based
full body control for the atlas robot. In Inter-
national Conference on Humanoid Robots, 2014.
2

[34] Chelsea Finn, Tianhe Yu, Tianhao Zhang,
Pieter Abbeel, and Sergey Levine. One-shot
visual imitation learning via meta-learning. In
Conference on robot learning, 2017. 3

[35] Peter R. Florence, Corey Lynch, Andy Zeng,
Oscar Ramirez, Ayzaan Wahid, Laura Downs,
Adrian S. Wong, Johnny Lee, Igor Mordatch,
and Jonathan Tompson. Implicit behavioral
cloning. ArXiv, abs/2109.00137, 2021. 3

[36] Zipeng Fu, Xuxin Cheng, and Deepak Pathak.
Deep whole-body control: learning a unified
policy for manipulation and locomotion. In
Conference on Robot Learning, 2022. 3

[37] Jean-Bastien Grill, Florian Strub, Florent
Altché, Corentin Tallec, Pierre Richemond,

13

https://mobile-aloha.github.io
https://arxiv.org/abs/2310.08864


Mobile ALOHA: https://mobile-aloha.github.io

Elena Buchatskaya, Carl Doersch, Bernardo
Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-
a new approach to self-supervised learning.
Advances in neural information processing sys-
tems, 33:21271–21284, 2020. 9

[38] Jiayuan Gu, Devendra Singh Chaplot, Hao Su,
and Jitendra Malik. Multi-skill mobile manip-
ulation for object rearrangement. ICLR, 2023.
3

[39] Abhinav Gupta, Adithyavairavan Murali, Dhi-
raj Prakashchand Gandhi, and Lerrel Pinto.
Robot learning in homes: Improving general-
ization and reducing dataset bias. Advances in
neural information processing systems, 2018. 3

[40] Kaiming He, X. Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR),
pages 770–778, 2015. 19

[41] Kyle Hsu, Moo Jin Kim, Rafael Rafailov, Jia-
jun Wu, and Chelsea Finn. Vision-based ma-
nipulators need to also see from their hands.
ArXiv, abs/2203.12677, 2022. URL https://api.
semanticscholar.org/CorpusID:247628166. 9

[42] Jiaheng Hu, Peter Stone, and Roberto Martín-
Martín. Causal policy gradient for whole-
body mobile manipulation. arXiv preprint
arXiv:2305.04866, 2023. 3

[43] Xiaoyu Huang, Dhruv Batra, Akshara Rai, and
Andrew Szot. Skill transformer: A monolithic
policy for mobile manipulation. In Proceedings
of the IEEE/CVF International Conference on
Computer Vision, 2023. 3

[44] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoff-
mann, Peter Pastor, and Stefan Schaal. Dynam-
ical movement primitives: learning attractor
models for motor behaviors. Neural computa-
tion, 2013. 3

[45] Yasuhiro Ishiguro, Tasuku Makabe, Yuya
Nagamatsu, Yuta Kojio, Kunio Kojima, Fumi-
hito Sugai, Yohei Kakiuchi, Kei Okada, and
Masayuki Inaba. Bilateral humanoid teleoper-
ation system using whole-body exoskeleton
cockpit tablis. IEEE Robotics and Automation
Letters, 2020. 3

[46] Stephen James, Michael Bloesch, and An-
drew J. Davison. Task-embedded control net-
works for few-shot imitation learning. ArXiv,
abs/1810.03237, 2018. 3

[47] Eric Jang, Alex Irpan, Mohi Khansari, Daniel
Kappler, Frederik Ebert, Corey Lynch, Sergey
Levine, and Chelsea Finn. Bc-z: Zero-shot task

generalization with robotic imitation learning.
In Conference on Robot Learning, 2022. 3

[48] Snehal Jauhri, Jan Peters, and Georgia Chal-
vatzaki. Robot learning of mobile manipula-
tion with reachability behavior priors. IEEE
Robotics and Automation Letters, 2022. 3

[49] Edward Johns. Coarse-to-fine imitation learn-
ing: Robot manipulation from a single demon-
stration. 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 4613–
4619, 2021. 3

[50] Edward Johns. Coarse-to-fine imitation learn-
ing: Robot manipulation from a single demon-
stration. In 2021 IEEE international conference
on robotics and automation (ICRA), pages 4613–
4619. IEEE, 2021. 3

[51] Matthew Johnson, Brandon Shrewsbury, Syl-
vain Bertrand, Tingfan Wu, Daniel Du-
ran, Marshall Floyd, Peter Abeles, Douglas
Stephen, Nathan Mertins, Alex Lesman, et al.
Team ihmc’s lessons learned from the darpa
robotics challenge trials. Journal of Field
Robotics, 2015. 3

[52] Oussama Khatib, K Yokoi, K Chang, D Ruspini,
R Holmberg, A Casal, and A Baader. Force
strategies for cooperative tasks in multiple
mobile manipulation systems. In Robotics Re-
search: The Seventh International Symposium,
1996. 2

[53] Doik Kim, Bum-Jae You, and Sang-Rok Oh.
Whole body motion control framework for ar-
bitrarily and simultaneously assigned upper-
body tasks and walking motion. Modeling,
Simulation and Optimization of Bipedal Walk-
ing, 2013. 3

[54] Heecheol Kim, Yoshiyuki Ohmura, and Ya-
suo Kuniyoshi. Robot peels banana with goal-
conditioned dual-action deep imitation learn-
ing. ArXiv, abs/2203.09749, 2022. 3

[55] Jens Kober and Jan Peters. Learning motor
primitives for robotics. In 2009 IEEE Interna-
tional Conference on Robotics and Automation,
2009. 3

[56] Eric Krotkov, Douglas Hackett, Larry Jackel,
Michael Perschbacher, James Pippine, Jesse
Strauss, Gill Pratt, and Christopher Orlowski.
The darpa robotics challenge finals: Results
and perspectives. The DARPA Robotics Chal-
lenge Finals: Humanoid Robots To The Rescue,
2018. 2

[57] Corey Lynch, Mohi Khansari, Ted Xiao,
Vikash Kumar, Jonathan Tompson, Sergey
Levine, and Pierre Sermanet. Learning latent

14

https://mobile-aloha.github.io
https://api.semanticscholar.org/CorpusID:247628166
https://api.semanticscholar.org/CorpusID:247628166


Mobile ALOHA: https://mobile-aloha.github.io

plans from play. In Conference on robot learn-
ing, pages 1113–1132. PMLR, 2020. 3

[58] Yuntao Ma, Farbod Farshidian, Takahiro Miki,
Joonho Lee, and Marco Hutter. Combining
learning-based locomotion policy with model-
based manipulation for legged mobile manip-
ulators. IEEE Robotics and Automation Letters,
2022. 3

[59] Ajay Mandlekar, Danfei Xu, J. Wong, Soroush
Nasiriany, Chen Wang, Rohun Kulkarni,
Li Fei-Fei, Silvio Savarese, Yuke Zhu, and
Roberto Mart’in-Mart’in. What matters in
learning from offline human demonstrations
for robot manipulation. In Conference on Robot
Learning, 2021. 3

[60] Suraj Nair, Aravind Rajeswaran, Vikash Ku-
mar, Chelsea Finn, and Abhinav Gupta. R3m:
A universal visual representation for robot
manipulation. arXiv preprint arXiv:2203.12601,
2022. 3

[61] Octo Model Team, Dibya Ghosh, Homer
Walke, Karl Pertsch, Kevin Black, Oier Mees,
Sudeep Dasari, Joey Hejna, Charles Xu, Jian-
lan Luo, Tobias Kreiman, You Liang Tan,
Dorsa Sadigh, Chelsea Finn, and Sergey
Levine. Octo: An open-source generalist robot
policy. https://octo-models.github.io, 2023. 3, 5

[62] Alexandros Paraschos, Christian Daniel, Jan
Peters, and Gerhard Neumann. Using proba-
bilistic movement primitives in robotics. Au-
tonomous Robots, 42:529–551, 2018. 3

[63] Jyothish Pari, Nur Muhammad Shafiullah,
Sridhar Pandian Arunachalam, and Lerrel
Pinto. The surprising effectiveness of repre-
sentation learning for visual imitation. arXiv
preprint arXiv:2112.01511, 2021. 3, 5, 8, 9

[64] Peter Pastor, Heiko Hoffmann, Tamim Asfour,
and Stefan Schaal. Learning and generaliza-
tion of motor skills by learning from demon-
stration. 2009 IEEE International Conference
on Robotics and Automation, pages 763–768,
2009. 3

[65] Luigi Penco, Nicola Scianca, Valerio Modugno,
Leonardo Lanari, Giuseppe Oriolo, and Serena
Ivaldi. A multimode teleoperation framework
for humanoid loco-manipulation: An appli-
cation for the icub robot. IEEE Robotics &
Automation Magazine, 2019. 3

[66] Luka Peternel and Jan Babič. Learning of
compliant human–robot interaction using full-
body haptic interface. Advanced Robotics, 2013.
3

[67] Dean A. Pomerleau. Alvinn: An autonomous

land vehicle in a neural network. InNIPS, 1988.
1, 3

[68] Amartya Purushottam, Yeongtae Jung,
Christopher Xu, and Joao Ramos. Dynamic
mobile manipulation via whole-body bilateral
teleoperation of a wheeled humanoid. arXiv
preprint arXiv:2307.01350, 2023. 3

[69] Ilija Radosavovic, Tete Xiao, Stephen James,
Pieter Abbeel, Jitendra Malik, and Trevor Dar-
rell. Real-world robot learning with masked
visual pre-training. CoRL, 2022. 3

[70] Ilija Radosavovic, Baifeng Shi, Letian Fu, Ken
Goldberg, Trevor Darrell, and Jitendra Ma-
lik. Robot learning with sensorimotor pre-
training. arXiv preprint arXiv:2306.10007, 2023.
9

[71] Rouhollah Rahmatizadeh, Pooya Abol-
ghasemi, Ladislau Bölöni, and Sergey Levine.
Vision-based multi-task manipulation for
inexpensive robots using end-to-end learning
from demonstration. 2018 IEEE International
Conference on Robotics and Automation (ICRA),
pages 3758–3765, 2017. 3

[72] Joao Ramos and Sangbae Kim. Humanoid dy-
namic synchronization through whole-body
bilateral feedback teleoperation. IEEE Trans-
actions on Robotics, 2018. 3

[73] Olaf Ronneberger, Philipp Fischer, and
Thomas Brox. U-net: Convolutional net-
works for biomedical image segmentation.
ArXiv, abs/1505.04597, 2015. URL https://api.
semanticscholar.org/CorpusID:3719281. 19

[74] Erick Rosete-Beas, Oier Mees, Gabriel Kalweit,
Joschka Boedecker, and Wolfram Burgard. La-
tent plans for task-agnostic offline reinforce-
ment learning. In Conference on Robot Learn-
ing, pages 1838–1849. PMLR, 2023. 3

[75] Max Schwarz, Christian Lenz, Andre Rochow,
Michael Schreiber, and Sven Behnke. Nim-
bro avatar: Interactive immersive telepresence
with force-feedback telemanipulation. In 2021
IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 5312–
5319, 2021. 3

[76] Mingyo Seo, Steve Han, Kyutae Sim, Se-
ung Hyeon Bang, Carlos Gonzalez, Luis Sentis,
and Yuke Zhu. Deep imitation learning for
humanoid loco-manipulation through human
teleoperation. Humanoids, 2023. 3

[77] NurMuhammad (Mahi) Shafiullah, Zichen Jeff
Cui, Ariuntuya Altanzaya, and Lerrel Pinto.
Behavior transformers: Cloning k modes with
one stone. ArXiv, abs/2206.11251, 2022. 3

15

https://mobile-aloha.github.io
https://octo-models.github.io
https://api.semanticscholar.org/CorpusID:3719281
https://api.semanticscholar.org/CorpusID:3719281


Mobile ALOHA: https://mobile-aloha.github.io

[78] Nur Muhammad Mahi Shafiullah, Anant
Rai, Haritheja Etukuru, Yiqian Liu, Ishan
Misra, Soumith Chintala, and Lerrel Pinto.
On bringing robots home. arXiv preprint
arXiv:2311.16098, 2023. 3

[79] Dhruv Shah, Ajay Sridhar, Arjun Bhorkar,
Noriaki Hirose, and Sergey Levine. Gnm:
A general navigation model to drive any
robot. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 7226–
7233. IEEE, 2023. 3, 5

[80] Lin Shao, Toki Migimatsu, Qiang Zhang,
Karen Yang, and Jeannette Bohg. Con-
cept2robot: Learning manipulation concepts
from instructions and human demonstrations.
The International Journal of Robotics Research,
40(12-14):1419–1434, 2021. 3

[81] Lucy Xiaoyang Shi, Archit Sharma, Tony Z
Zhao, and Chelsea Finn. Waypoint-based
imitation learning for robotic manipulation.
CoRL, 2023. 2, 3, 5

[82] Mohit Shridhar, Lucas Manuelli, and Dieter
Fox. Cliport: What and where pathways for
robotic manipulation. ArXiv, abs/2109.12098,
2021. 3

[83] Mohit Shridhar, Lucas Manuelli, and Dieter
Fox. Perceiver-actor: A multi-task trans-
former for robotic manipulation. ArXiv,
abs/2209.05451, 2022. 3

[84] Laura Smith, Nikita Dhawan, Marvin Zhang,
Pieter Abbeel, and Sergey Levine. Avid:
Learning multi-stage tasks via pixel-level
translation of human videos. arXiv preprint
arXiv:1912.04443, 2019. 3

[85] Jiaming Song, Chenlin Meng, and Stefano Er-
mon. Denoising diffusion implicit models.
arXiv preprint arXiv:2010.02502, 2020. 9, 19

[86] Charles Sun, Jedrzej Orbik, Coline Manon
Devin, Brian H Yang, Abhishek Gupta, Glen
Berseth, and Sergey Levine. Fully autonomous
real-world reinforcement learning with appli-
cations to mobile manipulation. In Conference
on Robot Learning, 2021. 3

[87] Susumu Tachi, Yasuyuki Inoue, and Fumihiro
Kato. Telesar vi: Telexistence surrogate an-
thropomorphic robot vi. International Journal
of Humanoid Robotics. 3

[88] Eugene Valassakis, Georgios Papagiannis,
Norman Di Palo, and Edward Johns. Demon-
strate once, imitate immediately (dome):
Learning visual servoing for one-shot imita-
tion learning. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), 2022. 3

[89] Chen Wang, Linxi Fan, Jiankai Sun, Ruo-
han Zhang, Li Fei-Fei, Danfei Xu, Yuke Zhu,
and Anima Anandkumar. Mimicplay: Long-
horizon imitation learning by watching hu-
man play. arXiv preprint arXiv:2302.12422,
2023. 3

[90] Josiah Wong, Albert Tung, Andrey Kurenkov,
Ajay Mandlekar, Li Fei-Fei, Silvio Savarese,
and Roberto Martín-Martín. Error-aware im-
itation learning from teleoperation data for
mobile manipulation. In Conference on Robot
Learning, 2022. 3

[91] BohanWu, Roberto Martin-Martin, and Li Fei-
Fei. M-ember: Tackling long-horizon mobile
manipulation via factorized domain transfer.
ICRA, 2023. 3

[92] Jimmy Wu, Rika Antonova, Adam Kan,
Marion Lepert, Andy Zeng, Shuran Song,
Jeannette Bohg, Szymon Rusinkiewicz, and
Thomas Funkhouser. Tidybot: Personalized
robot assistance with large language models.
IROS, 2023. 3

[93] Keenan A Wyrobek, Eric H Berger,
HF Machiel Van der Loos, and J Ken-
neth Salisbury. Towards a personal robotics
development platform: Rationale and design
of an intrinsically safe personal robot. In 2008
IEEE International Conference on Robotics and
Automation, 2008. 2

[94] Fei Xia, Chengshu Li, Roberto Martín-Martín,
Or Litany, Alexander Toshev, and Silvio
Savarese. Relmogen: Integrating motion gen-
eration in reinforcement learning for mobile
manipulation. In 2021 IEEE International Con-
ference on Robotics and Automation (ICRA),
2021. 3

[95] Annie Xie, Lisa Lee, Ted Xiao, and Chelsea
Finn. Decomposing the generalization gap in
imitation learning for visual robotic manipu-
lation. arXiv preprint arXiv:2307.03659, 2023.
5

[96] Haoyu Xiong, Quanzhou Li, Yun-Chun Chen,
Homanga Bharadhwaj, Samarth Sinha, and
Animesh Garg. Learning by watching: Physi-
cal imitation of manipulation skills from hu-
man videos. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), pages 7827–7834. IEEE, 2021. 3

[97] Jingyun Yang, Junwu Zhang, Connor Settle,
Akshara Rai, Rika Antonova, and Jeannette
Bohg. Learning periodic tasks from human
demonstrations. In 2022 International Confer-

16

https://mobile-aloha.github.io


Mobile ALOHA: https://mobile-aloha.github.io

ence on Robotics and Automation (ICRA), pages
8658–8665. IEEE, 2022. 3

[98] Jonathan Heewon Yang, Dorsa Sadigh, and
Chelsea Finn. Polybot: Training one pol-
icy across robots while embracing variability.
In Conference on Robot Learning, pages 2955–
2974. PMLR, 2023. 3

[99] Ruihan Yang, Yejin Kim, Aniruddha Kemb-
havi, Xiaolong Wang, and Kiana Ehsani. Har-
monic mobile manipulation. arXiv preprint
arXiv:2312.06639, 2023. 3

[100] Taozheng Yang, Ya Jing, Hongtao Wu, Jiafeng
Xu, Kuankuan Sima, Guangzeng Chen, Qie
Sima, and Tao Kong. Moma-force: Visual-
force imitation for real-world mobile manipu-
lation. arXiv preprint arXiv:2308.03624, 2023.
3

[101] Naoki Yokoyama, Alexander William Clegg,
Eric Undersander, Sehoon Ha, Dhruv Batra,
and Akshara Rai. Adaptive skill coordination

for robotic mobile manipulation. arXiv pre-
print arXiv:2304.00410, 2023. 3

[102] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep
Dasari, Tianhao Zhang, Pieter Abbeel, and
Sergey Levine. One-shot imitation from ob-
serving humans via domain-adaptive meta-
learning. arXiv preprint arXiv:1802.01557, 2018.
3

[103] Andy Zeng, Peter R. Florence, Jonathan Tomp-
son, Stefan Welker, Jonathan Chien, Maria At-
tarian, Travis Armstrong, Ivan Krasin, Dan
Duong, Vikas Sindhwani, and Johnny Lee.
Transporter networks: Rearranging the visual
world for robotic manipulation. In Conference
on Robot Learning, 2020. 3

[104] Tony Z Zhao, Vikash Kumar, Sergey Levine,
and Chelsea Finn. Learning fine-grained bi-
manual manipulation with low-cost hardware.
RSS, 2023. 1, 2, 3, 4, 5, 8, 9

17

https://mobile-aloha.github.io


Mobile ALOHA: https://mobile-aloha.github.io

A. Appendix
A.1. High Five

Kitchen island

High Five: The robot base is initialized next to the kitchen island. The robot keeps moving around the kitchen island until a human is in front of 
it, then high five with the human. Each demo has 2000 steps or 40 seconds, and typically contains 3-4 high fives.

#1 #2init.

Figure 6: Task Definition of High Five.

We include the illustration for the High Five task in Figure 6. The robot needs to go around the kitchen
island, and whenever a human approach it from the front, stop moving and high five with the human. After
the high five, the robot should continue moving only when the human moves out of its path. We collect data
wearing different clothes and evaluate the trained policy on unseen persons and unseen attires. While this
task does not require a lot of precision, it highlights Mobile ALOHA’s potential for studying human-robot
interactions.

A.2. Example Image Observations
Figure 7 showcases example images ofWipe Wine captured during data collection. The images, arranged
sequentially in time from top to bottom, are sourced from three different camera angles from left to right
columns: the top egocentric camera, the left wrist camera, and the right wrist camera. The top camera
is stationary with respect to the robot frame. In contrast, the wrist cameras are attached to the arms,
providing close-up views of the gripper in action. All cameras are set with a fixed focal length and feature
auto-exposure to adapt to varying light conditions. These cameras stream at a resolution of 480 × 640 and a
frame rate of 30 frames per second.

Figure 7: Example Image Observations of Wipe Wine. We show the observations from the top camera, left wrist
camera and right wrist camera from left to right columns. These images are arranged sequentially in time from top to
bottom.
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A.3. Experiment Details and Hyperparameters of ACT, Diffusion Policy and VINN
We carefully tune the baselines and include the hyperparameters for the baselines and co-training in
Table 5, 6, 7, 8, 9.

sample prob. from Mobile ALOHA data 0.5
sample prob. from ALOHA data 0.5

Table 5: Hyperparameters of co-training.

learning rate 2e-5
batch size 16
# encoder layers 4
# decoder layers 7
feedforward dimension 3200
hidden dimension 512
# heads 8
chunk size 45
beta 10
dropout 0.1
backbone pretrained ResNet18[40]

Table 6: Hyperparameters of ACT.

learning rate 1e-4
batch size 32
chunk size 64
scheduler DDIM[85]
train and test diffusion steps 50, 10
ema power 0.75
backbone pretrained ResNet18[40]
noise predictor UNet[73]

image augmentation
RandomCrop(ratio=0.95) &
ColorJitter(brightness=0.3, contrast=0.4, saturation=0.5) &
RandomRotation(degrees=[-5.0, 5.0])

Table 7: Hyperparameters of Diffusion Policy.

learning rate 3e-4
batch size 128
epochs 100
momentum 0.9
weight decay 1.5e-6

Table 8: Hyperparameters of BYOL, the feature extractor of VINN.

k (nearest neighbour) selected with lowest validation loss
chunk size 100
state weight 5
camera feature weight 1:1:1 (for front, left and right wrist)

Table 9: Hyperparameters of VINN + Chunking.
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A.4. Open-Loop Replaying Errors
Figure 8 shows the spread of end-effector error at the end of replaying a 300 steps (6s) demonstration. The
demonstration contains a 180 degree turn with radius of roughly 1m. At the end of the trajectory, the right
arm would reach out to a piece of paper on the table and tap it gently. The tapping position are then marked
on the paper. The red cross denotes the original tapping position, and the red dots are 20 replays of the
same trajectory. We observe significant error when replaying the base velocity profile, which is expected
due to the stochasticity of the ground contact and low-level controller. Specifically, all replay points are
biased to the left side by roughly 10cm, and spread along a line of roughly 20cm. We found our policy to be
capable of correcting such errors without explicit localization such as SLAM.

Figure 8: Open-lopp Replay Errors. We mark the right arm end-effector position on a piece of paper for the original
episode (red cross), and 20 replays of the same episode (red dots).
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